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Abstract

Experiments were conducted to assess the performance of a fully-passive flapping-foil hydrokinetic turbine for which
the self-induced and self-sustained blade motions are resulting from the interaction between the blade’s elastic sup-
ports (springs and dampers) and the flow field. Previous numerical studies have shown that such a turbine can extract
a substantial amount of energy from the flow while offering the possibility to simplify the complex mechanical appa-
ratus generally needed to constrain and couple the blade pitching and heaving motions in the case of the conventional
fully-constrained flapping-foil turbine. Based on these promising numerical investigations, a prototype was designed
and tested in a water channel at a chord Reynolds number of 21 000. Robust and periodic motions of large amplitudes
were observed leading to an energy harvesting efficiency reaching 31% and a power coefficient of 0.86. The sensitiv-
ity of the turbine dynamics to seven different structural and inflow parameters was evaluated experimentally around a
baseline case achieving a high level of performance. It was found that the turbine maintains a good performance over
a large range of parameters.
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1. Introduction

The flapping-foil turbine concept is one of the various innovative and promising sources of clean and renewable
energy that have received an increased attention during the last decade (Young et al., 2014; Xiao and Zhu, 2014). It
consists in one or multiple blades undergoing both pitching (rotational) and heaving (translational) motions with a
swept area that is perpendicular to the flow. Although it would also be possible for these turbines to extract energy
from the wind, they have mostly been developed as hydrokinetic turbines, which extract energy from rivers or tidal
currents. The flapping-foil turbine concept has proven to be competitive with the horizontal-axis and vertical-axis
turbine technologies, with efficiencies exceeding 40% (Kinsey et al., 2011; Kinsey and Dumas, 2012, 2014; Young
et al., 2014; Xiao and Zhu, 2014).

In order to reach such a good level of performance, the designers have, in the past, mechanically coupled and
constrained the two motions through complex mechanisms, hence making the turbine a single-degree-of-freedom (1-
DOF) device (McKinney and DeLaurier, 1981; Kinsey et al., 2011; Xu et al., 2017). This approach allows prescribing
the amplitudes and the frequencies of the heaving and pitching motions as well as the phase lag between them.
However, several issues can arise from this complexity. First, a significant amount of energy can be lost before being
converted into electricity. For example, Kinsey et al. (2011) reported that 25% of the power extracted from the flow by
their fully-constrained flapping-foil turbine was lost before reaching the electric generator due to the friction between
the different moving components forming the coupling mechanism. Moreover, complex mechanical assemblies are
usually prone to a higher risk of failure in addition to being more expensive.
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Instead of optimizing the coupling mechanism, a more fundamental change has been proposed: the mechanism can
simply be removed! One possible way to achieve this is to use an independent actuator for the pitching motion (Kim
et al., 2017), making the concept a two-degree-of-freedom (2-DOF) turbine. Let us recall here that efficient flapping-
foil turbines usually require only a small amount of energy to drive the pitching motion on a cycle-averaged basis,
while the heaving motion accounts for the net energy extraction (Kinsey and Dumas, 2008, 2014; Zhu, 2011). Such
a 2-DOF turbine does not necessitate rigid mechanical links to couple the heaving and the pitching motions, but
needs a dedicated actuator for the pitching motion, controllers for both degrees of freedom and an electric generator
connected to the heaving motion. Moreover, the electric generator of such a turbine may need to act as an actuator
at some instants during the turbine blade cycle in order to prescribe the desired heaving motion. Therefore, this
motion-constrained strategy still results in a relatively complex apparatus.

Several authors proposed a simplification to the aforementioned 2-DOF version of the flapping-foil turbine by
considering a free or passive heaving motion (Abiru and Yoshitake, 2011, 2012; Deng et al., 2015; Derakhshandeh
et al., 2016; Griffith et al., 2016; Huxham et al., 2012; Shimizu et al., 2008; Sitorus et al., 2015; Teng et al., 2016; Wu
et al., 2014, 2015; Zhan et al., 2017; Zhu et al., 2009; Zhu and Peng, 2009). More specifically, this scenario involves
a blade that is elastically supported in heave instead of being connected to the turbine structure with rigid links. One
consequence of this simplification is that the heaving motion cannot be prescribed, but rather solely relies on the inter-
action between the elastically-supported foil and the flow. The heaving motion is thus self-induced and self-sustained.
Two-dimensional (2D) numerical studies (Deng et al., 2015; Teng et al., 2016) and experimental works (Abiru and
Yoshitake, 2011, 2012; Huxham et al., 2012) reported efficiencies exceeding 30% and 20%, respectively. This “semi-
passive” turbine concept does not need a controller in heave and a simpler form of energy-extracting device (generator)
can be used. Indeed, since the heaving motion is free, the energy-conversion device never has to act as an actuator.
It corresponds in this case to an energy sink throughout the turbine blade cycle. This device could still be an electric
generator in order to convert the energy extracted from the flow into electricity, but other possibilities also arise, such
as using the flapping-foil turbine concept as a reciprocating pump (Farthing, 2013). However, both an actuator and a
controller are still needed to prescribe the pitching motion.

A further simplification, for which both degrees of freedom are decoupled and elastically supported, was first
proposed by Peng and Zhu (2009). This is referred to as a fully-passive flapping-foil turbine. For a given flow,
they observed four different types of responses depending on the structural parameters characterizing the elastically-
supported foil. Among them, only one was suitable for a stable and efficient energy extraction. This response was
characterized by periodic pitching and heaving motions with large amplitudes and it led to an efficiency of 20% and a
power coefficient of about 0.3. The other responses were either irregular, thereby negatively affecting the predictability
and the controllability of the energy extraction, or the foil remained stationary at its equilibrium position and did not
extract any energy from the flow. Zhu (2012) demonstrated that the presence of shear in the inflow could lead to
new undesired types of responses and, more importantly, could restrict the parameter range for which useful large-
amplitude periodic motions are observed. Wang et al. (2017) later found that this parameter range is also affected by
the pitch axis location and that a pitch axis located at 0.35 chord length from the leading edge was optimal in their
case.

The above-cited studies performed by Peng and Zhu (2009), Zhu (2012) and Wang et al. (2017) have all been
conducted in the laminar regime (Re = 1 000 and Re = 400). Veilleux and Dumas (2017) carried out 2D nu-
merical simulations at a much larger Reynolds number of 500 000 using the Spalart-Allmaras URANS turbulence
model (Spalart and Allmaras, 1994), which is more representative of the operation of full-scale turbines. As in the
works of Peng and Zhu (2009) and Zhu (2012), Veilleux and Dumas (2017) observed different responses of the foil,
including large-amplitude periodic motions. Following an optimization process, they obtained a turbine efficiency
reaching 29.1% and a power coefficient of 0.935. Furthermore, they pointed out that an adequate synchronization
between the pitching and heaving motions is crucial for an optimal energy extraction by fully-passive flapping-foil
turbines, as is also the case for their fully-constrained counterparts (Xiao and Zhu, 2014; Young et al., 2014).

While the aforementioned studies reported good results from 2D numerical simulations, the same level of per-
formance has yet to be observed experimentally with a fully-passive flapping-foil turbine prototype. Similar devices
have been studied previously but these works did not focus on the energy extraction performance (Amandolese et al.,
2013; Pigolotti et al., 2017). Such a prototype has therefore been designed for the present work and has been tested in
a water channel with the objective of proving the feasibility and confirming the potential of the fully-passive flapping-
foil turbine concept. The current study also evaluates the sensitivity of the turbine performance to the variation of
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Figure 1: Outline of the fully-passive flapping-foil turbine concept.

several governing parameters. The fully-passive concept, the experimental setup and the measurement methodology
are described in Section 2, while the analysis of a baseline case and the results of a parametric study are presented in
Section 3.

2. Methodology

2.1. The fully-passive flapping-foil turbine concept
The fully-passive flapping-foil turbine concept considered in this study is similar to the one described in the work

of Veilleux and Dumas (2017). As shown in Fig. 1, it consists in a rigid blade elastically supported by springs in heave
and in pitch as well as by a damper in heave. This damper models the energy sink that would result, for example,
from the energy conversion into electricity by an electric generator. The blade is free to pitch (θ(t)) about a pitch axis
located at a distance xp from the leading edge and to heave (h(t)) in the y-direction. The motions are restricted to
these two degrees of freedom (DOF) and gravity acts in the span direction, or z-direction, hence playing no role in the
blade dynamics. Unlike the turbine analyzed by Veilleux and Dumas (2017), no pitch damper is explicitly used in the
current study. However, due to the inherent presence of friction in a real experimental setup, some undesired viscous
pitch damping (Dθ,v) is inevitably present and must be considered in addition to some viscous heave damping (Dh,v)
as well as some Coulomb friction (dry friction) both in heave (Fy Coulomb) and in pitch (M Coulomb). As a result, the
total linear heave damping coefficient (Dh) is the sum of the desired energy sink (Dh,e), corresponding to the energy
that could be converted into electricity, and the viscous damping stemming from the additional undesired friction in
heave (Dh,v):

Dh = Dh,e + Dh,v , (1)

while the total linear pitch damping coefficient (Dθ) simply corresponds to the undesired viscous damping in pitch:

Dθ = Dθ,v . (2)

Because of the presence of Coulomb friction in the experimental setup and the use of a different sign convention
for θ, the equations of motion are slightly different than those presented by Veilleux and Dumas (2017). They are
given here in their dimensionless form:

CFy/2 = m∗h ḧ∗ + S ∗
(
θ̈∗ cos θ − θ̇∗2 sin θ

)
+ D∗h ḣ∗ + k∗h h∗ + CFy Coulomb/2 , (3)

CM/2 = I∗θ θ̈
∗ + S ∗ḧ∗ cos θ + D∗θ θ̇

∗ + k∗θ θ + CM Coulomb/2 , (4)

where the superscript (·) denotes differentiation with respect to time and:
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, ḣ∗ =
ḣ
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The definitions of all the parameters involved in the equations of motion as well as those shown in Fig. 1 are
provided in Table 1. Details about the derivation of the dimensionless equations can be found in the work of Veilleux
(2014).

Table 1: List of the parameters involved in the equations of motion.

Symbol Units Definition

b [m] Blade span length
c [m] Chord length
ρ [Kg/m3] Water density
U∞ [m/s] Freestream velocity
h [m] Heave position of the pitch axis (upward positive in Fig. 1)
θ [rad] Pitch angle (clockwise positive in Fig. 1)
t [s] Time
xp [m] Distance between the leading edge and the pitch axis
xθ [m] Distance between the pitch axis and the center of mass

(defined positive when the pitch axis is upstream of the center of mass)
Fy [N] Hydrodynamic force component in the heave (y) direction
M [N·m] Hydrodynamic moment about the pitch axis
Fy Coulomb [N] Coulomb friction force component in the heave (y) direction
M Coulomb [N·m] Coulomb friction moment about the pitch axis
mh [Kg] Mass of all the components undergoing the heaving motion
Iθ [Kg·m2] Moment of inertia about the pitch axis
S [Kg·m] Static moment (mass of the components only undergoing the pitching motion times xθ)
Dh [N·s/m] Total linear heave damping coefficient
Dh,e [N·s/m] Linear heave damping coefficient of the eddy-current brake (desired energy sink)
Dh,v [N·s/m] Linear heave damping coefficient of the heave bearings
Dθ [N·m·s/rad] Linear pitch damping coefficient of the pitch bearings
kh [N/m] Heave stiffness coefficient
kθ [N·m/rad] Pitch stiffness coefficient

The two nonlinear equations of motion (Eqs. 3 and 4) are coupled both via the coupling between the hydrodynamic
force and moment and the inertial coupling terms, i.e., the terms involving the static moment S ∗3. However, the inertial

3This parameter was referred to as the static imbalance in the work of Veilleux (2014); Veilleux and Dumas (2017).
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coupling terms only play a role when the static moment is not zero, i.e., when the center of mass does not coincide with
the pitch axis. It is worth recalling that there are no mechanical links between the heaving and the pitching motions
that could enforce a particular relation between these two degrees of freedom. In other words, the motion shapes, the
amplitudes, the frequencies and the phase lag between the heaving and the pitching motions are not imposed.

For a given flow, there are 9 structural parameters playing a role in the turbine dynamics explicitly appearing in
Eqs. 3 and 4, namely:

CFy Coulomb , CM Coulomb , m∗h, I∗θ , S ∗, D∗h, D∗θ, k∗h and k∗θ ,

in addition to the position of the pitch axis (xp/c) for a total of 10 governing structural parameters. The challenge of
designing a fully-passive flapping-foil turbine therefore consists in finding adequate values for these 10 parameters
that result in useful motions in terms of energy extraction, i.e., periodic motions of large amplitudes, with a single
frequency for both degrees of freedom and an appropriate phase lag between the heaving motion and the pitching
motion.

2.2. Experimental setup
The experiments were carried out in the water channel of the Fluid Mechanics Laboratory at the University of

Victoria, BC, Canada. Its test section has a cross section of 0.45 m by 0.45 m and a length of 2.5 m. The fully-passive
flapping-foil turbine prototype is composed of non-moving components, components only undergoing the heaving
motion and components undergoing both the heaving and the pitching motions, indicated by different colors in Fig. 2.
These different components can also be observed in Fig. 3, which shows the blade at two different positions during a
given test in the water channel.

Figure 2: 3D model of the turbine prototype showing the non-moving components in gray, the components only undergoing the heaving motion in
blue and the components undergoing both the heaving and the pitching motions in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A carriage is mounted on linear guided roller bearings, thereby allowing it to move in the heave (transverse)
direction. The top end of the blade is attached to a shaft, which is itself free to rotate while moving with the heaving
carriage. The turbine blade is straight, its cross section corresponds to a symmetric NACA0015 profile with a 50 mm
chord length and the pitch axis is located at the third-chord point (xp/c = 1/3). In order to minimize the tip losses,
end plates are placed at both ends of the blade. Moreover, the distance between the free extremity of the blade and the

5



(a) h/c = 0 and θ = 0◦ (equilibrium position).

(b) h/c , 0 and θ , 0◦.

Figure 3: Top view of the fully-passive flapping-foil turbine prototype with the blade at two different positions during a given test in the water
channel. The water is flowing from the bottom right corner of the figure toward the top left corner, which is perpendicular to the heaving motion.
A video showing such a top view of the baseline case presented in Section 3.1 is available in the supplementary material provided with the online
version of this paper.

channel floor was set to a very small gap of 5 mm, which corresponds to a tenth of the blade chord length. The blade
span length (b) is 0.38 m and the water level was set to 0.42 m at rest. As a result, the blade is completely submerged
during the tests, while all the other components are located above water, except for the end plates and a fraction of the
shaft holding the blade. This can be seen in Fig. 4.

The fully-passive flapping-foil turbine prototype presented in this work was designed based on the optimal case
reported by Veilleux and Dumas (2017). However, several aspects differ from their optimal 2D numerical case due to
practical design limitations, especially regarding the Reynolds number, the static moment, the presence of Coulomb
friction, the three-dimensionality of the flow, the blockage and the presence of a free surface. Besides, the prototype
allows us to independently vary the three inertial properties, namely the heaving mass (mh), the moment of inertia
about the pitch axis (Iθ) and the static moment (S ), as well as the heave damping (Dh,e) and the heave and pitch
stiffness coefficients (kh and kθ). More information about how these variations can be achieved is given in Appendix
A.
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Figure 4: Side view showing the submerged turbine components, namely the blade, the end plates and a fraction of the shaft holding the blade. The
water is flowing from right to left. A video showing such a side view of the baseline case presented in Section 3.1 is available in the supplementary
material provided with the online version of this paper.

2.3. Measurement protocols

For each test, the blade is initially held in place at its equilibrium position, namely the middle of the channel in
heave (h/c = 0) with the blade chord line being aligned with the inflow velocity (θ = 0). The water velocity is then
set to a desired value before suddenly releasing the blade. The blade positions in heave and in pitch are recorded at a
sampling frequency of 83.3 Hz and during 120 seconds, which roughly corresponds to 100 oscillations of the blade,
with two rotary encoders generating 10 000 pulses per revolution. The digital signals provided by each encoder are
converted into analog signals (0-5 V) using a 14-bit digital-to-analog converter (DAC), and these analog signals are
sampled with a NI USB-6218 data-acquisition board connected to a laptop.

In order to convert the reciprocating heaving motion into a rotational motion that can be measured by the heave
encoder, a timing belt pulley is fixed to the shaft of the heave encoder and is in contact with a timing belt glued to an
aluminum plate undergoing the heaving motion, as shown in Fig. 5. Note that the blade velocity components in heave
and in pitch are computed using second-order central-difference schemes.

The inflow velocity (U∞) is measured using Particle Image Velocimetry (PIV) on a vertical plane (xz) located 13
chord lengths upstream of the pitch axis and covering 0.8c in the streamwise (x) direction and 4.2c in the spanwise
(z) direction. The PIV measurements are carried out with a sampling frequency of 100 Hz during 16 seconds, which
roughly corresponds to between 15 and 20 blade cycles. The turbulent intensity of the inlet flow based on the stream-
wise velocity fluctuations is below 1% and the uniformity of the inflow has been verified by computing the standard
deviations of the velocity profiles in the spanwise (z) and transverse (y) directions, which are around 0.1% in both
directions.

Since the friction in the pitch and heave bearings can change over time due to their slight wear, it was estimated at
the start and at the end of every series of experiments conducted in the channel. A range of values is therefore given
to characterize the different friction contributions for a specific test. The methodology that has been used to estimate
these friction contributions is presented in Appendix B.4.

The ambient temperature as well as the temperature of the aluminum sliding plate of the eddy-current brake are
measured with a standard mercury thermometer and an infrared thermometer (Fluke 65), respectively. The ambient
temperature during a given test is used to determine the water properties, namely its density and its dynamic viscosity,
by interpolating the tabulated data available in the book of Munson et al. (2013). Regarding the temperature of the
eddy-current brake’s sliding plate, it is used to correct the values of the heave damping coefficient of the eddy-current
brake, as described in Appendix B.4.
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Figure 5: Timing belt used to convert the reciprocating heaving motion into a rotational motion for the heave encoder.

2.4. Performance metrics

The motions of the different cases considered are compared in terms of the reduced frequency ( f ∗), the phase lag
between the heaving motion and the pitching motion (φ) and the amplitudes in heave (H∗0) and in pitch (Θ0). These
metrics are defined as:

f ∗j =
f j c
U∞

, (5)

φ j =
360
T j

(
tθmax j − thmax j

)
[degrees] , (6)

H∗0 j =
hmax j − hmin j

2c
, (7)

Θ0 j =
θmax j − θmin j

2
, (8)

where the subscript j stands for the jth turbine blade oscillation, f is the frequency of the motions, which is always the
same for both degrees of freedom for all the cases reported in this study, T is the oscillation period (T = 1/ f ), hmax,
hmin, θmax and θmin are the extreme heave and pitch positions reached during a given turbine blade oscillation, and tθmax

and thmax are the instants at which these extreme positions are reached. Note that the value of φ obtained from Eq. 6 is
given in degrees.

Two other metrics characterizing the energy extraction, namely the efficiency (ηe) and the power coefficient in
heave (CPh,e ), both based on the cycle-averaged power dissipated in the eddy-current brake which models the energy
extraction, are also used to compare the different cases that have been tested. They are defined as:

ηe j =
Ph,e j

1
2
ρU3

∞ b d j

, (9)

where:

Ph,e j =
1
T j

∫ t+T j

t

(
Dh,e ḣ2

)
dt , (10)
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and

CPh,e j = η,e j
d j

c
. (11)

with b being the blade span length and d j being the overall transverse extent of the blade motion during the jth turbine
blade cycle (Kinsey and Dumas, 2008). In other words, d j corresponds to the distance between the highest and the
lowest points reached by any point on the blade surface during the jth cycle.

Note that these definitions of the efficiency and the power coefficient must not be confused with the definitions
that are typically used for fully-constrained turbines (Kinsey and Dumas, 2014). Indeed, the efficiency and the power
coefficient that are usually reported for fully-constrained turbine technology are based on the energy transferred from
the flow to the turbine blade and do not take into account the power transmission efficiency. With the present exper-
imental setup, it is not possible to directly compute the power transferred from the flow to the blade since the forces
acting on the blade are not measured. The power dissipated in the heave damper that is used to compute ηe and CPh,e is
necessarily smaller than the total power extracted from the flow because a fraction is inevitably lost due the undesired
friction in the moving components.

Lastly, all the results presented in the following sections have been obtained by computing average values from
90 turbine blade cycles. For example:

f ∗ =
1

90

90∑
j=1

f ∗j . (12)

3. Results

3.1. Baseline case

Following a preliminary series of tests, a case achieving a high efficiency has been selected as the baseline case
and is presented in this section. The parameters describing this baseline case as well as some metrics characterizing
its performance are given in Table 2, while time evolutions of the pitch and heave positions are presented in Fig 6.
Moreover, two videos of this case are available in the supplementary material provided with the online version of this
paper.

Table 2: Baseline case description and performance.

Parameter Value Performance metric Averaged value

Re 21 000 f ∗ 0.133 ± 0.001
m∗h 3.36 ± 0.05 φ 99◦ ± 3◦

I∗θ 0.091 ± 0.001 H∗0 0.891 ± 0.002
S ∗ 0.040 ± 0.001 Θ∗0 85.0◦ ± 0.9◦

D∗h,e 1.23 ± 0.03 ηe 26.8% ± 0.7%
k∗h 1.91 ± 0.03 CPh,e 0.68 ± 0.02
k∗θ 0
D∗h,v [0.047 − 0.074] ± 0.008
D∗θ [0.003 − 0.005] ± 0.003
CFy Coulomb [0.07 − 0.07] ± 0.04
CM Coulomb [0.015 − 0.021] ± 0.005

It is worth recalling again that the amplitudes, the frequency and the phase lag between the heaving and the
pitching motions are not constrained, but rather result from the structural and hydrodynamic parameters characterizing
a specific case. It is therefore impressive to notice that the kinematics of the baseline case turn out to be very similar
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(a)

(b)

(c)

Figure 6: Heave (a) and pitch (b) positions over time for the baseline case (see Table 2), shown in solid blue and in dashed red respectively, with
the blade released from its equilibrium position at t/T = 0, where t is the dimensional time and T is the dimensional oscillation period of the blade
averaged over 90 oscillations. A zoom of the shaded area in (a) and (b), which approximately corresponds to one turbine blade oscillation, is shown
in (c). The zoom area starts at an instant for which the pitch angle is zero and the heave position is close to a minimum.

to the motions leading to the best performance achieved with fully-constrained turbines. Indeed, previous studies
devoted to the fully-constrained turbine concept have shown that high efficiencies are usually observed when the
turbine blade undergoes large-amplitude motions in heave (on the order of one chord length) and in pitch (≈ 80◦), at a
reduced frequency between 0.10 and 0.20 approximately and with a phase lag close to 90◦ (Kinsey and Dumas, 2014;
Young et al., 2014; Xiao and Zhu, 2014).

Following the 2D numerical works of Veilleux and Dumas (2017) and Wang et al. (2017), who respectively
obtained efficiencies of 29.1% and 32% and power coefficients of 0.935 and 0.95, the current experimental work
further demonstrates that such performance can be obtained despite the presence of some “real-life” effects such as
the viscous and Coulomb friction contributions stemming from the bearings, the tip losses, the drag of the submerged
fraction of the shaft holding the blade and the presence of a free surface. It is also interesting to note that since the
undesired viscous damping in the heave bearings is about 5% of the eddy-current brake damping for the baseline case
(see Table 2), the efficiency and the power coefficient would be both 5% larger if this undesired damping contribution
was zero. An even larger increase would be expected if the viscous damping in pitch as well as the Coulomb friction
in heave and in pitch could also be eliminated.

The regularity and the periodicity of the motions, once a permanent regime is reached, are notable. A quantitative
measure of this periodicity is given in Table 3 by providing the standard deviations of the different performance
metrics presented in Table 2. Considering that the ultimate objective of this study is to develop a simple and reliable
energy extraction device, this makes the baseline case even more suitable for a turbine application.

It is interesting to note that the blade pitches passively even if k∗θ = 0 for the baseline case. By analyzing the relative
contributions of each term appearing in the governing equations of motion (Eqs. 3 and 4), Veilleux and Dumas (2017)
found that the dominant term responsible for limiting the pitch amplitude and reversing the pitch velocity for their
optimal case was the hydrodynamic moment about the pitch axis for which a large peak was observed every half
cycle. The contribution of the pitch spring stiffness, although not zero in their case, was negligible. Veilleux and
Dumas (2017) have highlighted the fact that the large moment peak was related to the generation of a strong leading
edge vortex following the deep stall of the blade. It was also responsible for a non-sinusoidal pitching motion with
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Table 3: Averaged values and standard deviations of the performance metrics characterizing the baseline case computed from 90 blade cycles.

Performance metric Averaged value Standard deviation

f ∗ 0.133 0.014
φ 99◦ 3◦

H∗0 0.891 0.017
Θ∗0 85.0◦ 0.5◦

ηe 26.8% 0.6%
CPh,e 0.68 0.02

smaller pitch velocities observed when the blade is approaching an extremum in pitch than when the blade departs
from an extremum.

Unfortunately, the experimental setup used for the current study does not allow measuring the hydrodynamic
forces and moment acting on the blade, hence preventing us from performing a similar analysis. However, PIV
measurements have been carried out and a series of instantaneous vorticity fields around the blade are presented in
Fig. 7. This figure shows that the blade is subject to deep stall and that a large leading edge vortex is shed every half
cycle in the case of the baseline operating point, as for the optimal case of Veilleux and Dumas (2017). Furthermore,
a similar non-sinusoidal pitching motion has been obtained in the current study, as shown in Fig. 6c. Considering
that the flow fields and the time evolutions of the pitch angle are very similar in both studies and that the contribution
of the pitch spring is close or equal to zero in both cases, the hydrodynamic moment is most likely responsible for
limiting the pitch amplitude and reversing the pitch velocity for the baseline case of the current study, as it was for the
optimal case found by Veilleux and Dumas (2017).

Even if the moment about the pitch axis cannot be directly measured, all the terms on the right hand side of Eq. 4
can be computed, which allows estimating the moment coefficient by summing all of them. The evolution of the terms
appearing in Eq. 4 are shown in Fig. 8 over the same time span as in Fig. 6c, which approximately corresponds to one
complete blade cycle starting when the pitch angle is zero and the heave position is close to a minimum. The results
show that the inertia term (I∗θ θ̈

∗) is much larger than all the other terms appearing on the right hand side of Eq. 4.
This confirms the hypothesis that the pitching motion of the baseline case essentially results from the balance between
the moment generated by the fluid flow and the inertia term. By observing Figs. 6c, 7 and 8, one can notice that the
large leading edge vortex that is generated as the blade stalls results in a large positive moment peak when θ < 0 (see
the instants t/T = 0.4 in Fig. 7 and t/T ≈ 14.8 in Fig. 8), which in turn results in a large positive pitch acceleration
that limits the pitch amplitude. Once the leading edge vortex is shed beyond the trailing edge, the moment quickly
becomes negative (see the instants t/T = 0.5 in Fig. 7 and t/T ≈ 14.9 in Fig. 8). A similar behavior was observed by
Veilleux and Dumas (2017) and is described in more details in their work. Note that the results presented in Fig. 8 are
a bit noisy because they involve the computation of the heave and pitch accelerations from the position measurements.
In order to limit the uncertainty of the results presented in this figure, the sampling rate was reduced to half its nominal
value of 83.3 Hz, used for the rest of the current study, to 41.7 Hz. This results in an uncertainty of the inertia term
corresponding to 5% of its peak value.

A static instability, known as divergence, can occur when the restoring moment stemming from the pitch springs
is not large enough to counteract the hydrodynamic moment (Dowell, 2004). More precisely, the theory predicts that
the critical dimensionless pitch spring stiffness coefficient (k∗θ crit) is given by:

k∗θ crit =
π e
c
, (13)

where e is the distance between the point of application of the fluid force and the pitch axis and it is defined positive
when the point of application of the fluid force is located upstream of the pitch axis. The blade is unstable when
k∗θ < k∗θ crit, which means that this instability can only occur if the pitch axis is located downstream of the point at
which the fluid force acts.
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Figure 7: Snapshots of the normalized spanwise vorticity field measured by PIV at different instants during one representative blade cycle of the
baseline case. The start of the cycle (t/T = 0) is defined as an instant for which the pitch angle is zero and the heave position is close to a minimum.
As a result, the time t/T = 0 in this figure is similar to the time t/T = 14.4 in Figs. 6 and 8.
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Figure 8: Time evolutions of the terms on the right hand side of Eq. 4 for the baseline case over the same time span as in Fig. 6c, i.e., approximately
one turbine cycle. The sum of all the terms (dashed black line) estimates CM/2.

Based on the linear unsteady theory (Dowell, 2004; Fung, 2008) and considering a thin symmetric foil, the fluid
force is expected to act around the quarter-chord point. Since the pitch axis is located further downstream, at the
third-chord point, and because k∗θ = 0, the baseline case of the current study is expected to be subject to the divergence
instability. The fact that the blade starts to pitch even when it is being held in place in the heave direction supports this
inference. Indeed, this pitching motion would not occur if the present turbine was rather driven by the classical flutter
instability, which is a coupled-mode instability that requires both degrees of freedom to be active in order to arise.
Moreover, the motions of the current turbine are always damped when using pitch springs with too large stiffness
coefficients, as shown in Section 3.2.4, which again suggests that the divergence instability is the driving mechanism
of this fully-passive flapping-foil prototype. The occurrence of this static instability can also explain why the transient
period following the release of the blade is so short, as observed in Figs. 6a and 6b. About only two oscillation periods
(t/T ≈ 2) are required before the turbine reaches a permanent regime characterized by stable limit-cycle oscillations
(LCO) of large amplitudes. It is important to note that the theory leading to the divergence instability threshold,
given by Eq. 13, relies on the assumption of small displacements and a quasi-static approximation. According to this
theory, nothing limits the growth of the pitch amplitude when the blade is unstable. This theory is therefore useful to
explain why the pitching motion is initiated, which in turn drives the heaving motion, but it does not apply when large
amplitudes are reached in heave and in pitch because the nonlinearities of the flow become important.

By releasing the turbine blade from different initial pitch angles, it has been found that the permanent response
of the baseline case is not affected by variations of the initial conditions. Moreover, tests consisting of temporary
increasing or decreasing the flow velocity above or below its nominal value were conducted while the blade was
oscillating in the water. The turbine response was always returning to the same permanent regime following these
perturbations. These observations corroborate the findings of Peng and Zhu (2009), Amandolese et al. (2013) and
Wang et al. (2017) for large-amplitude and periodic limit-cycle oscillations. These studies also showed that, for other
types of responses, an oscillating blade could be significantly sensitive to the initial conditions and could be subject
to hysteresis, but this has not been observed during the current study.

3.2. Sensitivity of the turbine performance to the governing structural parameters
In this section, the impact of various structural parameters affecting the turbine blade dynamics is analyzed. The

effects of each structural parameter are investigated individually by keeping all the other structural parameters constant
with their baseline value (see Table 2).

Unless otherwise specified, all the tests presented in this section were conducted with an inflow velocity of 0.38
m/s, which corresponds to a Reynolds number of 21 000 based on the chord length. Moreover, all the cases that are
presented are similar to the baseline case in terms of the low sensitivity to the initial conditions and to perturbations,
the regularity of the permanent response and the shortness of the initial transient period.

13



In the figures presented in the following sections, empty markers are used to identify the baseline case and to
discriminate it from the other cases (filled markers). For the sake of clarity, the uncertainties are not shown in the
figures, but they are available in the supplementary material provided with the online version of this paper.

In order to evaluate the repeatability of the results, some experiments have been carried out twice for a given
set of structural parameters. More specifically, the same set of parameters was tested before and after each series of
experiments. The values obtained from these tests are included in Figs. 9, 11, 13, 14 and 15. This explains why two
markers can be observed for one specific value of the structural parameter considered. The baseline parameter values
were used to conduct these repeatability tests except when studying the effects of k∗θ and U∞, for which k∗θ = 0.068
and U∞ = 0.35 m/s were respectively used instead.

3.2.1. Heave stiffness
Fig. 9 shows the impact of the dimensionless heave stiffness (k∗h) on various performance metrics. All the other

structural parameters are kept constant except for the heaving mass (m∗h), which slightly varies between the various
cases because of the different number of heave springs used for each of them, as indicated in the legend of Fig. 9.

(a) Reduced frequency (solid green) and phase lag between the heaving
and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude (dashed red)

(c) Efficiency (solid black) and power coefficient (dashed turquoise)

Figure 9: Various performance metrics as functions of the dimensionless heave stiffness (k∗h). Empty markers are used to identify the baseline case
and the uncertainties are provided in the supplementary material along with the tabulated data used to produce this figure. m∗h = [3.34 − 3.38];
I∗θ = 0.091; S ∗ = 0.040; D∗h,e = 1.21; k∗θ = 0; D∗h,v = [0.047 − 0.074]; D∗θ = [0.003 − 0.005]; CFy Coulomb = [0.07 − 0.07];
CM Coulomb = [0.015 − 0.021].

The maximum efficiency, reduced frequency and pitch amplitude, namely 28.9%, 0.139 and 87.8◦, are all observed
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at the same operating point: k∗h = 2.54. While the efficiency and the power coefficient follow the same trend, the largest
power coefficient, with a value of 0.74, is obtained for a slightly smaller dimensionless heave stiffness (k∗h = 1.91).
This can be explained by the fact that the heave amplitude is larger with k∗h = 1.91 than with k∗h = 2.54, hence allowing
for more energy extraction. However, the efficiency decreases from k∗h = 2.54 to k∗h = 1.91 because the kinetic energy
flux passing through the turbine extraction plane increases even more than the power extracted.

Another noteworthy observation is that large amplitude motions with a significant energy extraction are even
observed with no spring in heave and no spring in pitch (zero stiffness). The adequate synchronization between the
pitching and the heaving motions leading to a good performance for this case, although not optimal, is therefore
mainly due to the hydrodynamic force and moment acting on the turbine blade. This has indeed been shown by
Veilleux (2014) who analyzed in more details a similar case with no spring in heave and no spring in pitch.

Furthermore, it is found that the pitch and heave amplitudes, the efficiency and the power coefficient all quickly
drop when k∗h exceeds approximately 3. This drop is related to the sudden transition from a phase lag around
90◦ between the heaving motion and the pitching motion to a phase lag close to 180◦. Indeed, it is known that a
phase lag of 90◦ is close to optimal when the pitch axis is located at the third-chord point (Xiao and Zhu, 2014) be-
cause the largest force acting on the blade in the heave direction and the largest heave velocity occur approximately
at the same time in this case. Conversely, the force component in the heave direction is completely out of phase with
the heave velocity when the phase lag is 180◦.

While the phase lag between the heaving and the pitching motions is considerably altered as the dimensionless
heave stiffness is increased, the reduced frequency is not affected as much. Moreover, the reduced frequency is neither
directly correlated with the heave natural frequency ( f ∗n,h =

√
k∗h/m

∗
h/2π), as shown in Fig. 10, nor with the pitch natural

frequency ( f ∗n,θ =
√

k∗θ/I
∗
θ/2π) since no pitch springs are used for all the cases presented in Figs. 9 and 10, resulting in

f ∗n,θ = 0. This suggests that the reduced frequency is related to another time scale associated to the fluid flow around
the turbine blade. However, the heave natural frequency remains relevant since it is found that the point of maximum
efficiency and maximum pitch amplitude are obtained when the reduced frequency and the heave natural frequency
coincide, which occurs when k∗h = 2.54. Furthermore, Fig. 10 shows that the reduced frequency increases with the
heave natural frequency until they coincide and then decreases as the heave natural frequency further increases. It is
also worthwhile to mention that the abrupt transition of the phase lag from 90◦ to 180◦ occurs when the heave natural
frequency becomes larger than the reduced frequency.

Figure 10: Comparison of the reduced frequency ( f ∗ in solid green) and the reduced heave natural frequency ( f ∗n,h in dashed black) as a function of
the dimensionless heave stiffness (k∗h). Empty markers are used to identify the baseline case.

3.2.2. Heaving mass
The effect of the dimensionless heaving mass is presented in Fig. 11. Due to the experimental setup limitations, it

is not possible to vary the dimensionless heaving mass to the same extent than the dimensionless heave stiffness. It is
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therefore normal to observe smaller variations for the different performance metrics in Fig. 11 than what is observed
in Fig. 9.

(a) Reduced frequency (solid green) and phase lag between the heaving
and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude (dashed red)

(c) Efficiency (solid black) and power coefficient (dashed turquoise)

Figure 11: Various performance metrics as functions of the dimensionless heaving mass (m∗h). Empty markers are used to identify the baseline
case and the uncertainties are provided in the supplementary material along with the tabulated data used to produce this figure. I∗θ = 0.091;
S ∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; k∗θ = 0; D∗h,v = [0.047 − 0.074]; D∗θ = [0.003 − 0.005]; CFy Coulomb = [0.07 − 0.07];
CM Coulomb = [0.015 − 0.021].

It is found that increasing the dimensionless heaving mass by 45% from the minimum value tested only results in
a variation of 2.5% (absolute) in terms of the efficiency (see Fig. 11c). This means that the manufacturer of a similar
fully-passive flapping-foil turbine would have some useful freedom regarding this structural parameter, which should
greatly facilitate the design process. Regarding the power coefficient, it is even less affected than the efficiency by
variations of the heaving mass, as was also observed by Deng et al. (2015) in the case of a flapping-foil turbine with
a prescribed pitching motion and an elastically-supported heaving motion.

The good performances reported here over the entire range of dimensionless heaving masses that have been tested
is related to the fact that the phase lag between the heaving and the pitching motions remains close to the optimal value
of 90◦. In the previous section, it was shown that the phase lag was shifting toward 180◦ as the heave natural frequency
was exceeding the reduced frequency. Figure 12 shows that the heave natural frequency remains below the reduced
frequency when varying the dimensionless heaving mass. It is expected that the heave natural frequency would exceed
the reduced frequency with smaller dimensionless heaving mass and that the phase lag would then tend toward 180◦,
as is observed when increasing the dimensionless heave stiffness (see Figs. 9a and 10). As mentioned earlier, it is
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unfortunately not possible to test smaller values of dimensionless heaving mass with the current experimental setup.

Figure 12: Comparison of the reduced frequency ( f ∗ in solid green) and the reduced heave natural frequency ( f ∗n,h in dashed black) as a function of
the dimensionless heaving mass (m∗h). Empty markers are used to identify the baseline case.

It can be observed in Figs. 9 and 11 that the dimensionless heave stiffness and the dimensionless heaving mass
have opposite effects on the motions around the baseline case. Indeed, Fig. 9 shows that, around the baseline di-
mensionless heave stiffness coefficient (k∗h = 1.91), the reduced frequency and the pitch amplitude increase while the
heave amplitude decreases as the dimensionless heave stiffness is increased. The opposite behavior is observed in
Fig. 11 for increasing values of the dimensionless heaving mass. This is because the heaving motion is very close to a
sine wave for all the cases presented in Figs. 9 and 11. Consequently, the heave acceleration is also resembling a sine
wave, but in antiphase with the heave position. In other words, the inertia term (m∗h ḧ∗) and the stiffness term (k∗h h∗),
appearing in Eq. 3, have similar shapes as functions of time, but with opposite signs.

3.2.3. Heave damping
For the sake of conciseness, the term dimensionless heave damping is used in this section to refer to the dimen-

sionless heave damping stemming only from the eddy-current brake (D∗h,e). The viscous damping contribution coming
from the bearings is therefore not included in the analysis. The reader is referred to Appendix B.4 for more details
about the evaluation of the heave damping. Let us recall that the energy dissipated in the eddy-current brake represents
the energy extracted from the flow that could be converted into electricity by an electric generator.

Fig. 13 presents the various performance metrics considered as functions of the dimensionless heave damping.
It is found that increasing the dimensionless heave damping does not significantly affect the reduced frequency and
the phase lag between the heaving and the pitching motions, but it results in a considerable decrease of the heave
amplitude, and, to a lesser extent, of the pitch amplitude. In spite of these amplitude decreases, Fig. 13c shows that
the efficiency remains relatively constant over the range of dimensionless heave damping coefficients that have been
tested. However, because of this constant efficiency and the decreasing amplitudes, the power coefficient decreases
when increasing the damping. These observations are very relevant in practice as they suggest that varying the
dimensionless heave damping allows controlling the turbine blade amplitudes in heave and in pitch without affecting
the efficiency too much. This could be especially useful when such turbines are deployed in an environment restricted
in space or if several turbines are positioned in close proximity.

3.2.4. Pitch stiffness
A very different behavior is observed when increasing the dimensionless pitch stiffness. Indeed, Fig. 14 shows

that the motions are completely damped when k∗θ = 0.154 or k∗θ = 0.236. For these two cases, the blade is always
returning to its equilibrium position, both in heave and in pitch, even if large heave positions and pitch angles are
used as the initial condition. As mentioned in Sec. 3.1, this supports the hypothesis that the blade is subject to the
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(a) Reduced frequency (solid green) and phase lag between the heaving
and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude (dashed red)

(c) Efficiency (solid black) and power coefficient (dashed turquoise)

Figure 13: Various performance metrics as functions of the dimensionless eddy-current brake damping in heave (D∗h,e). Empty markers are used
to identify the baseline case and the uncertainties are provided in the supplementary material along with the tabulated data used to produce this
figure. m∗h = 3.36; I∗θ = 0.091; S ∗ = 0.040; k∗h = 1.91; k∗θ = 0; D∗h,v = [0.047 − 0.074]; D∗θ = [0.003 − 0.005];
CFy Coulomb = [0.07 − 0.07]; CM Coulomb = [0.015 − 0.021].

divergence instability, which only occurs when the dimensionless pitch stiffness coefficient is below a given threshold
(see Eq. 13).

Fig. 14 also shows that both the efficiency and the power coefficient could increase for non-zero dimensionless
pitch stiffness compared to the baseline case, for which the dimensionless pitch stiffness is zero (no pitch springs).
Indeed, the maximum efficiency and power coefficient values that have been observed throughout this experimental
campaign, namely 31.0% and 0.86, have been obtained with k∗θ = 0.051. This is the operation point at which the
reduced frequency and the pitch natural frequency are the closest to each other, with a difference of about 5% between
them. Once again, this good performance is related to the fact that the phase lag between the heaving and the pitching
motions is close to the optimal value of 90◦. It is worth mentioning that this high efficiency is obtained even if the
pitch amplitude considerably decreases when using non-zero dimensionless pitch stiffness coefficients.

Lastly, it is found that the reduced frequency does not follow the trend of the pitch natural frequency, as it decreases
for increasing pitch stiffness coefficients. This suggests once again that the reduced frequency of the passive motions
is related to a time scale of the fluid flow around the blade, as mentioned in Section 3.2.1.
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(a) Reduced frequency (solid green) and phase lag between the heaving
and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude (dashed red)

(c) Efficiency (solid black) and power coefficient (dashed turquoise)

Figure 14: Various performance metrics as functions of the dimensionless pitch stiffness (k∗θ ). Empty markers are used to identify the baseline
case and the uncertainties are provided in the supplementary material along with the tabulated data used to produce this figure. m∗h = 3.36;
I∗θ = 0.091; S ∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; D∗h,v = [0.069 − 0.070]; D∗θ = [0.002 − 0.002]; CFy Coulomb = [0.04 − 0.06];
CM Coulomb = [0.02 − 0.02].

3.2.5. Moment of inertia and static moment
The turbine prototype used for the current study allows testing only two different values of the moment of inertia

(Iθ) and three different values of the static moment (S ). Moreover, with the current turbine design, it is not possible
to modify these parameters without slightly affecting the heaving mass, as described in Appendix A.2. Indeed, the
heaving mass is increased by 4% compared to the baseline case when Iθ or S are varied. Nevertheless, all the tests
conducted to assess the effects of the static moment are characterized with this same increased mass value.

The performance metrics of the different cases that have been tested are given in Tables 4 and 5. One can notice
that the variations of both the moment of inertia and the static moment do not significantly affect the turbine permanent
response. In the case of the dimensionless static moment, it is found that a larger value results in slightly smaller pitch
amplitudes, efficiencies and power coefficients. In future works, it would be useful to extend the range covered by
these two parameters to better evaluate their full impact.

3.3. Effect of the inflow velocity on the turbine performance

So far, the effects of varying different dimensionless structural parameters have been presented. These different
cases correspond to different designs of the fully-passive flapping-foil concept. In this section, we turn our attention
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Table 4: Various performance metrics as functions of the dimensionless moment of inertia about the pitch axis (I∗θ ). The uncertainties are provided
in the supplementary material. S ∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; k∗θ = 0; D∗h,v = [0.047 − 0.074]; D∗θ = [0.003 − 0.005];
CFy Coulomb = [0.07 − 0.07]; CM Coulomb = [0.015 − 0.021].

I∗θ m∗h f ∗ φ [deg] H∗0 Θ∗0 ηe CPh,e

0.091 m∗h = 3.36 0.131 100 0.911 84.6 26.7% 0.68
0.117 m∗h = 3.50 0.131 97 0.908 87.3 26.5% 0.68

Table 5: Various performance metrics as functions of the dimensionless static moment (S ∗). The uncertainties are provided in the supplementary
material. m∗h = 3.50; I∗θ = 0.117; D∗h,e = 1.21; k∗h = 1.91; k∗θ = 0; D∗h,v = [0.047 − 0.074]; D∗θ = [0.003 − 0.005];
CFy Coulomb = [0.07 − 0.07]; CM Coulomb = [0.015 − 0.021].

S ∗ f ∗ φ [deg] H∗0 Θ∗0 ηe CPh,e

0.023 0.128 99 0.935 86.8 27.3% 0.70
0.040 0.131 97 0.908 87.3 26.5% 0.68
0.056 0.132 95 0.864 87.8 25.1% 0.63

to the effects of varying the inflow velocity (U∞) for a given set of dimensional structural parameters. Consequently,
some dimensionless structural parameters do not remain constant since they vary with U∞ (see their definitions in
Section 2.1). Fig. 15 therefore provides some information about the response of a specific turbine design, with fixed
structural parameters, to different inflow velocities.

It is found that the phase lag is not significantly altered when the inflow velocity varies from approximately 0.35
m/s to 0.62 m/s. As a result, large efficiencies and power coefficients are still obtained for all the inflow velocities
that have been tested. Even though the efficiency decreases slightly when increasing the inflow velocity, the power
coefficient remains relatively constant because of the considerable increase of the heave amplitude. This is a significant
finding as this means that the power output that could be converted into electricity by this specific turbine design would
not be much affected by the velocity perturbations that could occur in the river or the tidal current in which this turbine
would be deployed.

4. Conclusion

A fully-passive flapping-foil turbine prototype has been successfully designed and tested in a water channel. This
innovative concept may lead to significant simplifications of some previously tested flapping-foil turbine designs,
which should yield cheaper and more reliable devices. Large-amplitude periodic motions have been observed and
these self-induced and self-sustained motions have led to a very good performance in terms of the efficiency and the
power coefficient, which have respectively reached 31.0% and 0.86. The present experimental demonstration therefore
confirms the feasibility and the great potential of the fully-passive concept.

Seven structural and inflow parameters have been independently varied around a baseline case. Good perfor-
mances have been achieved over a large range of parameter values, which is important in practice since this gives
some flexibility to the designer of such turbines. Periodic motions of large amplitudes leading to a high efficiency
have even been observed with no pitch spring and no heave spring. The phase lag between the heaving and the pitching
motions has been found to be a critical factor and it appears to be related to the ratio between the reduced frequency of
the turbine blade motions and the heave natural frequency. Moreover, the current results have shown that no sustained
motions could be obtained when the dimensionless pitch stiffness coefficient is larger than k∗θ = 0.154. This is because
the divergence instability is believed to be the driving mechanism of the current fully-passive flapping-foil turbine
prototype. Consequently, the position of the pitch axis is expected to play a significant role as it is a crucial parameter
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(a) Reduced frequency (solid green) and phase lag between the heaving
and the pitching motions (dashed purple)

(b) Heave amplitude (solid blue) and pitching amplitude (dashed red)

(c) Efficiency (solid black) and power coefficient (dashed turquoise)

Figure 15: Various performance metrics as functions of the inflow velocity (U∞). Empty markers are used to identify the baseline case and the
uncertainties are provided in the supplementary material along with the tabulated data used to produce this figure. m∗h = 3.36; I∗θ = 0.091;
S ∗ = 0.040; D∗h,e = 1.21; k∗h = 1.91; k∗θ = 0; D∗h,v = [0.063 − 0.072]; D∗θ = [0.003 − 0.007]; CFy Coulomb = [0.04 − 0.05];
CM Coulomb = [0.01 − 0.01]; Re = 21 000 at U∞ = 0.38 m/s (baseline case).

for the divergence instability (Dowell, 2004; Fung, 2008). This particular aspect should be investigated in futures
studies along with the effects of the tip losses.
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Figure A.1: Pitch springs attached to the shaft holding the turbine blade.

Appendix A. Structural parameters

Appendix A.1. Elastic supports

The heaving carriage is attached to the fixed structure of the turbine with extension springs. Two different sets of
extension springs can be used and the number of springs attached to the carriage can also be varied from zero spring
to a maximum of 6 pairs of springs (12 springs; see Fig. 3 where 3 pairs of springs can be seen). In pitch, the number
of springs that can be used is limited to either zero or two, but springs with four different stiffness coefficients have
been tested. Note that the desired torsional stiffness is obtained through the use of extension springs with one of their
end fixed to the carriage and the other end attached to a cable which is fastened to the shaft holding the blade, thereby
undergoing the pitching motion, as shown in Fig. A.1. Both the heave springs and the pitch springs can be seen in
Fig. 3.

As mentioned earlier, a linear damper is used as an energy sink in heave. It consists of a thin aluminum sliding
plate which is undergoing the heaving motion and passing, without making contact, between two magnets yoked
together with 1020 carbon steel to form an eddy-current brake. This eddy-current brake is shown in Fig. A.2 and a
schematic is presented in Fig. A.3. This damper is similar in principle to the one that has been used by Abiru and
Yoshitake (2011, 2012) for their flapping-foil turbine with a prescribed pitching motion and a passive heaving motion
or by Pigolotti et al. (2017) for their fully-passive flapping-plate setup.

Figure A.2: Eddy-current brake used as the heave damper which provides the desired energy sink.
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Figure A.3: Schematic of the eddy-current brake. The aluminum sliding plate, the yoke and the magnets are identified with the color varying from
the lighter gray to the darker one.

In theory, the resistive force (Fdamper) acting on the sliding plate of an eddy-current brake is given by (Wouterse,
1991):

Fdamper =

πD2
m t B2

0 K
4 ρe

 ḣ , (A.1)

where ρe is the electrical resistivity of the sliding plate material, namely aluminum, Dm is the magnet diameter, t is
the sliding plate thickness, B0 is the magnetic field in the middle of the gap (e) between the magnets when the plate is
not moving, ḣ is the heave velocity and K is a constant given by:

K =
1
2

1 − π2 Dm

24 w

 , (A.2)

with w being the width of the plate. The theoretical heave damping coefficient of the eddy-current brake (Dh,e theory) is
then simply obtained by dividing the resistive force with the heave velocity:

Dh,e theory =
πD2

m t B2
0 K

4 ρe
. (A.3)

The various parameters characterizing the heave damper are given in Table A.6.

Table A.6: Design of the heave damper

Parameter Value

Dm 1 in
e 1/8 in
Magnet thickness 1/2 in
Magnet material Neodymium (N48)
w 50 mm
t 1/8 in
Plate material Aluminum

In order to modify the heave damping coefficient, the distance between the center of the magnets and the edge
of the sliding plate (see lm in Fig. A.3) can be varied by moving the yoke so that the magnets can be shifted toward
the edge of the sliding plate, thereby reducing the magnetic field passing through the plate and, at the same time, the
heave damping coefficient of the eddy-current brake (see Eq. A.3). A value of lm = 0 corresponds to the center of the
magnets being aligned with the edge of the aluminum sliding plate, which is close to what is observed in Fig. A.2.
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According to the theory (Gosline et al., 2006), the relation between the heave velocity and the resistive force
generated by the eddy-current damper is linear if the heave velocity remains below a critical value. With 1/8 inch
aluminum plates, this critical velocity is around 19 m/s and is well above the maximum velocity reached with the
prototype during the tests conducted in the water channel.

It is important to note that the theory presented above has only been used to design the damper. The actual heave
damping coefficient of the prototype has been determined following a calibration process described in Appendix B.4.

Appendix A.2. Inertial properties

The turbine has been designed to be as light as possible while being able to withstand the forces at play and to limit
the deflection of the blade. To increase the heaving mass, some steel bars simply have to be added and fixed to the
carriage undergoing the heaving motion. The moment of inertia and the static moment can also be altered by adding
components specifically designed for that purpose, which are shown in black in Fig. A.4. Care has been taken so that
the modifications of the moment of inertia and the static moment can be made independently. The moment of inertia
can be increased by 28.6% with a variation of the static moment of less than 0.2% (left configuration in Fig. A.4).
Then, from this increased moment of inertia value, the static moment can be reduced by 42.5% (middle configuration)
or increased by 40% (right configuration) without affecting the moment of inertia. However, for all these cases, the
heaving mass is increased by 4% since the components in black in Fig. A.4 need to be added to the setup.

Figure A.4: Components undergoing the pitching motion.The light gray components are always present while the black components are added to
the setup when one wants to increase the moment of inertia or to modify the static moment. Increased Iθ + same S (left); Increased Iθ + reduced S
(middle); Increased Iθ + increased S (right).

Appendix B. Calibrations

Appendix B.1. Heave and pitch positions

The heave position is determined from the output voltage of the heave encoder using the following linear relation:

h = Ah ·
(
Eh − Ehi

)
+ hi , (B.1)

where Ah is the slope of the relation between the heave position (h) and the output voltage (Eh), and hi and Ehi

respectively correspond to the initial heave position and the initial output voltage of the heave encoder.
The equation giving the pitch angle is analogous to Eq. B.1:

θ = Aθ ·
(
Eθ − Eθi

)
+ θi , (B.2)
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where Aθ is the calibration constant relating the output voltage of the pitch encoder (Eθ) to a pitch angle (θ), and θi

and Eθi correspond to the initial pitch angle and the initial output voltage of the pitch encoder, respectively.
In order to determine the value of the calibration constant Ah in Eq. B.1, the heave carriage has been attached to

the tool of a machining center (computer numerical control (CNC) milling machine), which allowed us to prescribe
two different known heave positions (±0.09 m) with great accuracy. The value of Ah has then been obtained using the
relation:

Ah =

(
h2 − h1

)(
Eh2 − Eh1

) , (B.3)

where Eh is the output voltage of the heave encoder and the subscripts 1 and 2 correspond to the two prescribed heave
positions so that

(
h2 − h1

)
= 0.18 m. The average voltage difference

(
Eh2 − Eh1

)
has been computed from a total of

100 measurements and is equal to 3.3667 V. The resulting value of Ah is therefore:

Ah = 0.05346 m/V . (B.4)

The value of Aθ in Eq. B.2 has been evaluated using a similar method with the following relation:

Aθ =

(
θ2 − θ1

)(
Eθ2 − Eθ1

) . (B.5)

The blade has been successively held at 0◦ and 30◦ pitch angles so that
(
θ2 − θ1

)
= 30◦. This process has been repeated

100 times in order to obtain an accurate estimation of
(
Eθ2 − Eθ1

)
, which is 0.2543 V. The resulting value of Aθ is then

found to be equal to:
Aθ = 118 degrees/V . (B.6)

Finally, note that the digital-to-analog converter has been set so that its resolution is the same as that of the
encoders. In other words, one state of the 14-bit DAC corresponds to one pulse of the encoders.

Appendix B.2. Springs
A machining center has also been used to determine the stiffness of the different springs. One end of the springs

was fixed to the machining center’s mill table while the other end was attached to a load cell fastened to the machining
center’s moving tool. By prescribing different vertical positions of the tool and performing a linear regression analysis,
the relation between the force measured with the load cell and the spring elongation could be found:

F = k ∆ + F0 , (B.7)

where k is the spring stiffness, ∆ is the spring elongation, i.e., the distance between the position of the moving end
of the spring (extended) and its initial position (not extended), F0 is the tension force in the spring when the moving
end is at its initial position and F is the tension force in the spring for a given elongation. An example of the relation
between the force in a spring and its elongation is shown in Fig. B.1. It confirms the linear behavior of the springs.

Since several heave springs could be used in parallel to attach the carriage undergoing the heaving motion to the
structure of the turbine, the resultant heave stiffness (kh) in N/m is given by:

kh =

Nh∑
i=1

ki , (B.8)

where Nh is the number of heave springs used for a given case and ki is the stiffness of the ith heave spring.
Regarding the resultant pitch stiffness in N.m/rad, it is given by:

kθ = (k1 + k2)
D2

4
, (B.9)

where k1 and k2 are the stiffness coefficients of the two extension springs used in pitch and D is the diameter of the
groove in the component around which the cable linking both pitch springs is rotating, as seen in Fig. A.1.

Lastly, it is worth mentioning that some springs have been calibrated both before and after the experimental
campaign in order to confirm that their stiffness coefficients remained constant over time.

25



Figure B.1: Measurements of the force (F) as a function of the elongation (∆) for a given spring (red dots) along with the linear regression curve.

Appendix B.3. Mass, moment of inertia and static moment

Free vibration tests have been performed independently in heave and in pitch (with the other degree of freedom
fixed in place) at a sampling frequency of 5000 Hz to determine the mass undergoing the heaving motion (mh) and
the moment of inertia (Iθ). These tests have been conducted in ambient air so that the fluid forces are negligible
compared to the friction in the bearings. The blade, the end plate and the screws needed to fasten them together and
to fix them to the shaft undergoing the pitching motion were not in place during the free vibration tests in heave. As
a result, only a fraction of the total heaving mass has been evaluated using this method. The remaining mass fraction
has been determined by weighing the other components individually and summing their masses. The reason for not
simply weighing all the components undergoing the heaving motion is that using free vibration tests is a simple and
straightforward method allowing us to evaluate the equivalent mass stemming from the rotation of some components
such as the linear guided roller bearings and that of the heave springs which are not moving as rigid bodies with the
carriage since one of their end is attached to the fixed turbine structure.

The fraction of the heaving mass (mh free) present during the free vibration tests has been determined using the
following relation:

mh free = kh/ω
2
n, h free , (B.10)

where kh is the heave stiffness, which is known following the calibration described in Appendix B.2, and ωn, h free is
the heave natural frequency of the components present during the free vibration tests. However, as there was some
viscous friction in heave even if the heave damper was not present during these tests due to presence of the linear
guided roller bearings, the carriage did not exactly oscillate at its natural frequency (ωn, h free), but rather at its damped
natural frequency (ωd, h free):

ωn, h free =
ωd, h free√

1 − ζ2
h

, (B.11)

where ζh is the damping ratio in heave, whose evaluation is described in the next subsection. The heaving mass of the
components involved in the free vibration tests has therefore been computed using the equation:

mh free =
kh T 2

h free

(
1 − ζ2

h

)
4π2 , (B.12)

where Th free is the oscillation period (Th free = 2π/ωd, h free).
The same procedure has been used to determine the moment of inertia (Iθ), resulting in the equation:

Iθ =
kθ T 2

θ

(
1 − ζ2

θ

)
4π2 , (B.13)
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Note that, unlike the heaving mass, all the components undergoing the pitching motion were in place during the free
vibration tests as the individual contribution of a single component to the total moment of inertia cannot be easily
estimated. The average period evaluated from 15 to 120 complete oscillations, recorded during a few free vibration
tests, have been used to evaluate the period of oscillation Th free, while 20 to 40 oscillations have been used for Tθ.

Determining the static moment using free vibration tests would have involved the computation of the pitch and
heave accelerations which would therefore have been much less accurate than the computation of the heaving mass
and the moment of inertia. Consequently, the static moment has rather been determined using a 3D computer model
produced with a computer-aided design (CAD) software to localize the center of mass of each components undergoing
the pitching motion. Knowing the volume of these components from the CAD and their mass using a weighing scale,
their density could be computed and set in the computer model. The position of the center of mass could then be
accurately evaluated from the CAD software. In order to validate this procedure, the moment of inertia has been
computed from the CAD and compared to the value obtained from the free vibration tests. The difference between
the values obtained from both methods is below 1% for all the different moment of inertia values.

The static moment of each component undergoing the pitching motion has been found by multiplying their mass
with the distance between their center of mass and the pitch axis (xθ) (see Fig. 1 and Table 1 for the sign convention).
The total static moment is then simply given by:

S =

Nθ∑
i=1

(
mi xθ, i

)
, (B.14)

where Nθ is the number of components involved in the pitching motion and mi is the mass of the ith component
undergoing the pitching motion.

Appendix B.4. Linear damping and Coulomb friction
The friction in heave and in pitch is considered to be a sum of linear (viscous) and Coulomb contributions. A

simplified model of the Coulomb friction is considered for which the friction force ( fy Coulomb) and moment (m Coulomb)
are constant and acting in the opposite directions than the heave and pitch velocities:

Fy Coulomb = − fy Coulomb sign(ḣ) , (B.15)

M Coulomb = −m Coulomb sign(θ̇) . (B.16)

Using this assumption and following the procedure described in the work of Feeny and Liang (1996), the linear
damping and Coulomb friction contributions of a given degree of freedom can be evaluated from a single free vibration
test with the other degree of freedom being held in place, as has been done to evaluate the mass and the moment of
inertia (see Appendix B.3).

To determine the linear damping contribution, the parameter β has first been determined using:

β = −
1
π

ln
(
−

(Xi+1 − Xi−1)
(Xi − Xi−2)

)
, (B.17)

where Xi is the ith peak value in heave or in pitch of a free vibration test. This parameter is then used to compute the
damping ratio (ζ) of a given degree of freedom:

ζ =
β√

1 + β2
, (B.18)

from which the linear damping coefficients in heave (Dh) and in pitch (Dθ) can be evaluated:

Dh = 2 ζh

√
kh mh , (B.19)

Dθ = 2 ζθ
√

kθ Iθ . (B.20)
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Figure B.2: Contribution of the eddy-current brake to the heave damping coefficient (Dh,e) as a function of the distance between the center of the
magnets and the edge of the sliding plate (lm). Note that lm is zero when the center of the magnets is aligned with the edge of the sliding plate and
is positive when the magnets are shifted toward the center of the sliding plate (see Fig. A.3).

Note that this method allows computing the total linear damping (Dh) and therefore includes both the contribution of
the eddy-current brake (Dh,e) and the friction in the heave bearings (Dh,v). The value of Dh,v can be easily determined
as it is equal to Dh when the eddy-current brake is removed from the setup. As a result, the value of Dh,e can be
evaluated for different positions of the magnets (lm) by performing successive free vibration tests, including a case
without the eddy-current brake:

Dh,e calib = Dh calib − Dh,v calib , (B.21)

and the results are presented in Fig. B.2.
The different positions of the magnets tested during the calibration of the eddy-current brake have been chosen to

match those used during the tests conducted in the water channel. Nevertheless, the positions of the magnets were not
exactly the same and a linear interpolation has been performed to obtain a more accurate value of the eddy-current
brake damping during the tests in the channel for a given position of the magnets (lm). Moreover, one can notice from
the theory (see Eq. A.3) that the eddy-current brake damping varies with temperature since the magnets’ magnetic
field (B0) and the electrical resistivity of aluminum (ρe) are temperature dependent. The eddy-current brake damping
therefore needs to be corrected to take into account the temperature difference (∆T ) of the aluminum sliding plate
between the time at which a given test is conducted and the time at which the calibration has been carried out. The
eddy-current brake damping coefficient value for a given test is therefore given by:

Dh,e =

(
1 + αB0 ∆T

)2(
1 + αρe ∆T

) Dh,e calib , (B.22)

with:
∆T = T − Tcalib , (B.23)

where T is the temperature of the aluminum sliding plate during a given test, Tcalib is its temperature during the
calibration process (25.5 ◦C), Dh,e calib is the linearly interpolated eddy-current brake damping coefficient evaluated
during the calibration for a given position of the magnets, αB0 is the temperature coefficient of the magnetic field given
by (Pyrhonen et al., 2014):

αB0 = −0.0012 ◦C−1 , (B.24)

and αρe is the temperature coefficient of the electrical resistivity, which has a value of (Haynes, 2015):

αρe = 0.0044 ◦C−1 , (B.25)

around 24.85◦C.
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Note that the variations of the ambient temperature during the experimental campaign, which took place over
several weeks, have resulted in a maximum difference between the ambient temperature during a test and the ambient
temperature during the calibration of approximately 4 ◦C, which corresponds to a variation of the damping coefficient
by less than 3%.

Since most of the energy extracted from the flow is dissipated into heat in the aluminum sliding plate of the
eddy-current brake, an increase of the aluminum sliding plate temperature during a single test would not have been
surprising. However, the plate temperature has been measured with an infrared thermometer at the beginning and at
the end of every test conducted in the channel, each lasting 2 minutes, and the temperature difference was always
equal or below 0.2 ◦C. Consequently, the eddy-current brake damping can be considered to be constant during a given
test since its variation due to the temperature differences occurring during a single test is below 0.1%, which is smaller
than the damping coefficient uncertainty.

Regarding the Coulomb friction contributions, the constant friction force and moment (See Eqs. B.15 and B.16)
are given by:

fy Coulomb = Ch kh , (B.26)

m Coulomb = Cθ kθ , (B.27)

where Ch and Cθ are Coulomb friction parameters that are evaluated using the following equation with the corre-
sponding variables in heave and in pitch:

C =

[
(Xi+1 − Xi) + e−β π (Xi − Xi−1)

]
2
(
1 + e−β π

) , (B.28)

These formulations eliminate the bias that would arise from nonzero equilibrium positions in heave and in pitch since
subtractions of successive positive and negative peak values are used in Eqs. B.17 and B.28. Moreover, these two
equations have been generalized to consider all the peak values from each free vibration tests instead of just two pairs
of successive peaks. Lastly, the aerodynamic drag of the turbine components located above the water has been found
to be negligible compared to the friction in the bearings, even when considering the largest velocities that have been
reached during the whole experimental campaign.

Appendix C. Validation of the calibrations

In order to validate the parameter values determined from the calibrations, the equations of motion (Eqs. 3 and
4) have been solved numerically with second-order schemes and the results have been compared with free vibration
tests carried out with the experimental setup. These tests have been conducted in ambient air and without the blade.
Consequently, the numerical solver did not need to solve the Navier-Stokes equations because the aerodynamic drag
(in the air) of the remaining moving components is negligible compared to the other contributions in the equations
of motion. First, the results from one-degree-of-freedom free vibration tests in heave and in pitch are presented in
Figs. C.1 and C.2.

As the frequencies of the experimental signals agree well with those of the numerical solutions, one can conclude
that the evaluation of the heaving mass (mh), the heave stiffness (kh), the moment of inertia (Iθ) and the pitch stiffness
(kθ) are accurate. Furthermore, the fact that the amplitudes also agree well with each other validate that the estimations
of the linear damping and Coulomb friction contributions are also correct. This leaves the evaluation of the static
moment which could not be confirmed with a 1-DOF free vibration test since this parameter couples the heaving and
the pitching motions. A 2-DOF free vibration in the air has therefore been carried out and the results are presented
in Fig. C.3. Once again, a good match between the experimental results and the numerical simulation is observed for
both degrees of freedom, hence confirming that all the structural parameters have been correctly evaluated.
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Figure C.1: Comparison between the experimental data (solid red line) and the numerical solution (dashed black line) of a free vibration test in
heave with the blade being held at θ = 0◦. mh = 2.54 kg; Dh = 9.4 N.s/m; kh = 503.4 N/m; fy Coulomb = 0.1 N.

Figure C.2: Comparison between the experimental data (solid red line) and the numerical solution (dashed black line) of a free vibration test in
pitch with the blade being held at h/c = 0. Iθ = 2.23×10−4 Kg.m2; Dθ = 1.28×10−4 N.m.s/rad; kθ = 0.0333 N.m/rad; m Coulomb = 9×10−4

N.m.
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(a) Heave (b) Pitch

Figure C.3: Comparison between the experimental data (solid red lines) and the numerical solution (dashed black lines) of a free vibration test
involving both degrees of freedom. mh = 2.54 kg, Iθ = 1.01 × 10−4 Kg.m2, S = −0.00131 kg.m; Dh = 9.4 N.s/m; kh = 503.4 N/m;
kθ = 0.0097 N.m/rad; Dθ = 3.8 × 10−5 N.m.s/rad; fy Coulomb = 0.1 N; m Coulomb = 9 × 10−4 N.m.
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